

"A matemática é o alfabeto com que Deus escreveu o mundo" Galileu Galilei

▶ Questão 01

Pela teoria Newtoniana da gravitação, o potencial gravitacional devido ao Sol, assumindo simetria esférica, é dado por -V = GM/r, em que r é a distância média do corpo ao centro do Sol. Segundo a teoria da relatividade de Einstein, essa equação de Newton deve ser corrigida para $-V = GM/r + A/r^2$, em que A depende somente de G, de M e da velocidade da luz, c. Com base na análise dimensional e considerando k uma constante adimensional, assinale a opção que apresenta a expressão da constante A, seguida da ordem de grandeza da razão entre o termo de correção, A/r^2 , obtido por Einstein, e o termo GM/r da equação de Newton, na posição da Terra, sabendo a priori que k=1.

- A) $A = kGM/c = 10^{-5}$
- B) $A = kG^2M^2/c$ e 10^{-8}
- C) $A = kG^2M^2/c = 10^{-3}$
- D) $A = kG^2M^2/c^2$ e 10^{-5}
- E) $A = kG^2M^2/c^2$ e 10^{-8}

Resolução:

Cálculo da unidade de A:

$$\left[\frac{A}{r}\right] = \left[GM\right] \Rightarrow \left[A\right] = m \cdot \frac{m^3}{s^2 kg} \cdot kg : \left[A\right] = m^4 \cdot s^{-2} \quad (1)$$

Do enunciado:

$$[A] = [G]^{\alpha} \cdot [M]^{\beta} \cdot [C]^{\gamma} = \left(\frac{m^3}{s^2 kg}\right)^{\alpha} \cdot (kg)^{\beta} \cdot \left(\frac{m}{s}\right)^{\gamma} \qquad (2)$$

De (1) e (2), vem:

$$\begin{cases} \alpha = \beta \\ 3\alpha + \gamma = 4 \\ -2\alpha - \gamma = -2 \end{cases} \Rightarrow \alpha = \beta = \gamma = 2 \therefore A = k \frac{G^2 M^2}{c^2}$$

Cálculo de $f = \frac{A/r^2}{GM/r}$, com k=1:

$$f = \frac{k \frac{G^2 M^2}{c^2} / r^2}{GM / r} = \frac{GM}{c^2 r} = \frac{6.67 \cdot 10^{-11} \cdot 1.99 \cdot 10^{30}}{(3.0 \cdot 10^8)^2 \cdot 1.5 \cdot 10^{11}} = 9.87 \cdot 10^{-9}$$

 $\therefore A = k \frac{G^2 M^2}{c^2} \,$ e ordem de grandeza de $\, f \,$ igual a $\, 10^{-8}$.

Alternativa E

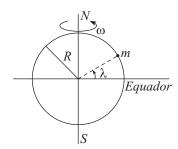
Considere a Terra como uma esfera homogênea de raio R que gira com velocidade angular uniforme ω em torno do seu próprio eixo Norte-Sul. Na hipótese de ausência de rotação da Terra, sabe-se que a aceleração da gravidade seria dada por $g=GM/R^2$. Como $\omega\neq 0$, um corpo em repouso na superfície da Terra na realidade fica sujeito forçosamente a um peso aparente, que pode ser medido, por exemplo, por um dinamômetro, cuja direção pode não passar pelo centro do planeta. Então, o peso aparente de um corpo de massa m em repouso na superfície da Terra a uma latitude λ é dado por

- A) $mg m\omega^2 R \cos \lambda$.
- B) $mg m\omega^2 R \operatorname{sen}^2 \lambda$.

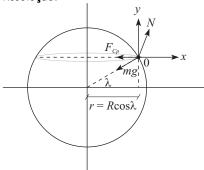
C)
$$mg\sqrt{1-\left[2\omega^2R/g+\left(\omega^2R/g\right)^2\right]}\sin^2\lambda$$
.

D)
$$mg\sqrt{1-\left[2\omega^2R/g-\left(\omega^2R/g\right)^2\right]\cos^2\lambda}$$
.

E)
$$mg\sqrt{1-\left[2\omega^2R/g-\left(\omega^2R/g\right)^2\right]\sin^2\lambda}$$
.



Resolução:



Da figura,

$$\vec{P} + \vec{N} = \vec{F}_{cp}$$

$$\vec{N} = \vec{F}_{cn} - \vec{P} \qquad (1)$$

$$\vec{P} = -mg\cos\lambda\hat{i} - mg\sin\lambda\hat{j} \quad (2)$$

$$\vec{F}_{cp} = -mw^2 R \cos \lambda \hat{i}$$
 (3)

Substituindo (2) e (3) em (1), vem:

$$\vec{N} = (+mg\cos\lambda - mw^2R\cos\lambda)\hat{i} + mg\sin\lambda\hat{i}$$

$$N = \sqrt{\left(-mg\cos\lambda + mw^2R\cos\lambda\right)^2 + \left(-mg\sin\lambda\right)^2}$$

$$N = \sqrt{m^2 g^2 \cos^2 \lambda - 2m^2 g w^2 R \cos^2 \lambda + m^2 w^4 R^2 \cos^2 \lambda + m^2 g^2 \sin^2 \lambda}$$

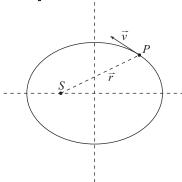
$$N = mg\sqrt{1 - \left[\frac{2w^2R}{g} - \left(\frac{w^2R}{g}\right)^2\right]}\cos\lambda$$

Alternativa D

► Questão 03

Considere um segmento de reta que liga o centro de qualquer planeta do sistema solar ao centro do Sol. De acordo com a 2ª Lei de Kepler, tal segmento percorre áreas iguais em tempos iguais. Considere, então, que dado instante deixasse de existir o efeito da gravitação entre o Sol e o planeta. Assinale a alternativa correta

- A) O segmento de reta em questão continuaria a percorrer áreas iguais em tempos iguais.
- B) A órbita do planeta continuaria a ser elíptica, porém com focos diferentes e a 2ª Lei de Kepler continuaria válida.
- C) A órbita do planeta deixaria de ser elíptica e a 2ª Lei de Kepler não seria mais válida.
- D) A 2ª Lei de Kepler só é válida quando se considera uma força que depende do inverso do quadrado das distâncias entre os corpos e, portanto, deixaria de ser válida.
- E) O planeta iria se dirigir em direção ao Sol.

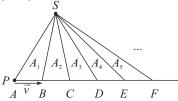


Como a força de atração gravitacional deixa de existir, o planeta segue em MRU.

Assim:

$$\overline{AB} = \overline{BC} = \overline{CD} = \overline{DE} = \dots$$

(MRU).



A área de cada triângulo é $A = \frac{B \cdot h}{2}$ \Rightarrow o segmento continua varrendo áreas iguais em tempos iguais.

Alternativa A

▶ Questão 04

A temperatura para a qual a velocidade associada à energia cinética média de uma molécula de nitrogênio, N_2 , é igual à velocidade de escape desta molécula da superfície da Terra é de, aproximadamente,

- A) $1,4 \times 10^5 \, \text{K}$.
- B) $1,4 \times 10^8 \text{ K}$.
- C) $7.0 \times 10^{27} \text{ K}$.
- D) $7.2 \times 10^4 \, \text{K}$.
- E) $8,4 \times 10^{28} \text{ K}$.

Resolução:

A velocidade de escape é tal que um corpo lançado da Terra com essa velocidade chega ao infinito com velocidade nula.

$$v_{e} = \sqrt{\frac{2GM}{R}} = \sqrt{\frac{2GM}{R^{2}}}$$

$$v_{e} = \sqrt{2gR} = \sqrt{2 \cdot 9.8 \cdot 6.380 \cdot 10^{6}} = 11.18 \cdot 10^{3} \text{ m/s}$$

A energia cinética média para um gás diatômico $\left(N_{2}\right)$ é dado por:

$$\overline{e}_c = \frac{5}{2}KT$$
 sendo \overline{e}_c (translação) $= \frac{3}{2}KT$ e \overline{e}_c (rotação) $= \frac{2}{2}KT$.

$$\overline{e}_c = \frac{1}{2} m \overline{v}^2 \quad \text{logo a energia para escape \'e } \ \overline{e}_c = \frac{3}{2} KT \ .$$

$$\frac{3}{2}KT = \frac{1}{2}m\overline{v}^2 \Rightarrow T = \frac{m\overline{v}^2}{3K}$$

$$T = \frac{(N_0 \cdot m) \cdot \overline{v}^2}{3 \cdot (N_0 \cdot K)} = \frac{MM \cdot \overline{v}^2}{3 \cdot R} = 1, 4 \cdot 10^5 K$$

$$T = 1, 4 \cdot 10^5 K$$

Alternativa A

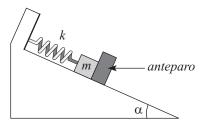
No plano inclinado, o corpo de massa m é preso a uma mola de constante elástica k, sendo barrado à frente por um anteparo. Com a mola no seu comprimento natural, o anteparo, de alguma forma, inicia seu movimento de descida com uma aceleração constante a. Durante parte dessa descida, o anteparo mantém contato com o corpo, dele se separando somente após um certo tempo. Desconsiderando quaisquer atritos, podemos afirmar que a variação máxima do comprimento da mola é dada por

A)
$$\left[mg \operatorname{sen} \alpha + m\sqrt{a(2g \operatorname{sen} \alpha + a)} \right] / k$$
.

B)
$$\left[mg \cos \alpha + m\sqrt{a(2g \cos \alpha + a)} \right] / k$$
.

C)
$$\left[mg \operatorname{sen} \alpha + m\sqrt{a(2g \operatorname{sen} \alpha - a)} \right] / k$$
.

- D) $m(g \operatorname{sen} \alpha a)/k$.
- E) $mg \operatorname{sen} \alpha / k$.

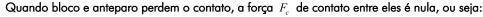


Resolução:

Diagrama de forças até o bloco e o anteparo perderem o contato:

Na direção do movimento:

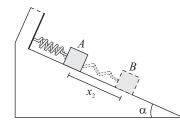
 $mg \operatorname{sen} \alpha - F_e - F_c = ma$.



$$mg \operatorname{sen} \alpha - kx_1 = ma$$

$$\therefore x_1 = \frac{m}{k} (g \operatorname{sen} \alpha - a)$$

A partir daí, como não há forças dissipativas, a energia mecânica se conserva:



$$\begin{split} E_{\scriptscriptstyle M_A} &= E_{\scriptscriptstyle M_B} \\ &\frac{m{v_{\scriptscriptstyle A}}^2}{2} + \frac{k{x_{\scriptscriptstyle 1}}^2}{2} + mgx_2 \sin\alpha = k\frac{\left(x_1 + x_2\right)^2}{2} \\ \text{Da cinemática, } v_{\scriptscriptstyle A}^{\ 2} &= 2ax_1 \text{ , então:} \end{split}$$

$$max_1 + \frac{kx_1^2}{2} + mg(x_1 + x_2 - x_1) \operatorname{sen} \alpha = k \frac{(x_1 + x_2)^2}{2}$$

A elongação máxima é $\Delta x = x_1 + x_2$. Substituindo Δx e x_1 na equação acima, vem:

$$ma \cdot \frac{m}{k} (g \operatorname{sen} \alpha - a) + \frac{k}{2} \cdot \left[\frac{m}{k} (g \operatorname{sen} \alpha - a) \right]^{2} + mg \left[\Delta x - \frac{m}{k} (g \operatorname{sen} \alpha - a) \right] \operatorname{sen} \alpha = k \frac{\Delta x^{2}}{2}$$

$$\frac{m}{k}(g \operatorname{sen} \alpha - a) \left[ma - mg \operatorname{sen} \alpha + \frac{m}{2}(g \operatorname{sen} \alpha - a) \right] = k \frac{\Delta x^2}{2} - mg \Delta x \operatorname{sen} \alpha$$

$$-\frac{m}{k}(g \operatorname{sen} \alpha - a) \cdot \frac{m}{2}(g \operatorname{sen} \alpha - a) = k\frac{\Delta x^2}{2} - mg\Delta x \operatorname{sen} \alpha$$

$$k\frac{\Delta x^2}{2} - mg\Delta x \operatorname{sen} \alpha + \frac{m^2}{2k} (g \operatorname{sen} \alpha - a)^2 = 0$$

$$\Delta x^2 - 2 \cdot \frac{mg \sec \alpha}{k} \cdot \Delta x + \left[\frac{m}{k} (g \sec \alpha - a) \right]^2 = 0$$

$$\Delta x^2 - 2 \cdot \Delta x \cdot \frac{mg \operatorname{sen} \alpha}{k} + \left(\frac{mg \operatorname{sen} \alpha}{k}\right)^2 = \left(\frac{m}{k}\right)^2 \left(2ag \operatorname{sen} \alpha - a^2\right)$$

$$\left(\Delta x - \frac{mg \operatorname{sen} \alpha}{k}\right)^2 = \left(\frac{m}{k}\right)^2 \left(2ag \operatorname{sen} \alpha - a^2\right)$$

$$\Delta x = \frac{mg \sin \alpha}{k} \pm \frac{m}{k} \sqrt{2ag \sin \alpha - a^2}$$

$$\Delta x = \left[mg \operatorname{sen} \alpha + m\sqrt{a(2g \operatorname{sen} \alpha - a^2)} \right] / k .$$

Alternativa C

▶ Que:

Questão 06

Um quadro quadrado de lado ℓ e massa m, feito de um material de coeficiente de dilatação superficial β , é pendurado no pino O por uma corda inextensível, de massa desprezível, com as extremidades fixadas no meio das arestas laterais do quadro, conforme a figura. A força de tração máxima que a corda pode suportar é F. A seguir, o quadro é submetido a uma variação de temperatura ΔT , dilatando. Considerando desprezível a variação no comprimento da corda devida à dilatação, podemos afirmar que o comprimento mínimo da corda para que o quadro possa ser pendurado com segurança é dado por

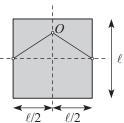
A)
$$2\ell F \sqrt{\beta \Delta T} / mg$$

B)
$$2\ell F(1+\beta\Delta T)/mg$$
.

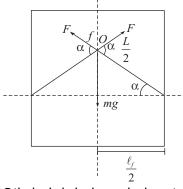
C)
$$2\ell F(1+\beta\Delta T)/\sqrt{(4F^2-m^2g^2)}$$
.

D)
$$2\ell F \sqrt{(1+\beta\Delta T)}/(2F-mg)$$
.

E)
$$2\ell F \sqrt{(1+\beta\Delta T)/(4F^2-m^2g^2)}$$
.



Resolução:



Cálculo do lado do quadrado após o aquecimento (ℓ_f) :

$$A_f = A_0 \left(1 + \beta \Delta T \right)$$

$$\ell_f^2 = \ell^2 \left(1 + \beta \Delta T \right)$$

$$\ell_{c} = \ell \sqrt{1 + \beta \Delta T}$$

Condição de equilíbrio do quadro aquecido.

 $2F \operatorname{sen} \alpha = mg$

$$\therefore \operatorname{sen} \alpha = \frac{mg}{2F} \quad (1)$$

Da figura,
$$\cos \alpha = \frac{\ell_f/2}{L/2} = \frac{\ell_f}{L}$$
 :: $\sin^2 \alpha = 1 - \frac{\ell_f^2}{L^2}$ (2)

em que L é o comprimento mínimo da corda para que o quadro possa ser pendurado.

Substituindo (1) em (2), vem:

$$\left(\frac{mg}{2F}\right)^2 = 1 - \left(\frac{\ell_f}{L}\right)^2 \Rightarrow \frac{\ell_f}{L} = \frac{\sqrt{4F^2 - m^2g^2}}{2F}$$

$$\therefore L = \frac{2F\ell_f}{\sqrt{4F^2 - m^2g^2}} \qquad (3)$$

Substituindo ℓ_f em (3), vem:

$$L = \frac{2F \cdot \ell \sqrt{1 + \beta \Delta T}}{\sqrt{4F^2 - m^2 g^2}}$$

$$L = 2F\ell\sqrt{\frac{1+\beta\Delta T}{4F^2 - m^2g^2}}$$

Alternativa E

Considere um semicilindro de peso P e raio R sobre um plano horizontal não liso, mostrado em corte na figura. Uma barra homogênea de comprimento L e peso Q está articulada no ponto O. A barra está apoiada na superfície lisa do semicilindro, formando um ângulo α com a vertical. Quanto vale o coeficiente de atrito mínimo entre o semicilindro e o plano horizontal para que o sistema todo permaneça em equilíbrio?

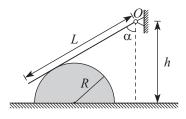
A)
$$\mu = \cos \alpha / \left[\cos \alpha + 2P(2h/LQ\cos(2\alpha) - R/LQ\sin\alpha)\right]$$

B)
$$\mu = \cos \alpha / \left[\cos \alpha + P(2h/LQ \sin(2\alpha) - 2R/LQ \cos \alpha)\right]$$

C)
$$\mu = \cos \alpha / \left[\sin \alpha + 2P \left(\frac{2h}{LQ} \sin \left(\frac{2\alpha}{LQ} \right) - \frac{R}{LQ} \cos \alpha \right) \right]$$

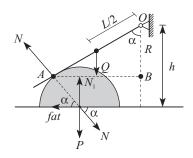
D)
$$\mu = \operatorname{sen} \alpha / \left[\operatorname{sen} \alpha + 2P \left(\frac{2h}{LQ} \cos(\alpha) - \frac{2R}{LQ} \cos \alpha \right) \right]$$

E)
$$\mu = \operatorname{sen} \alpha / \left[\cos \alpha + P(2h/LQ \operatorname{sen}(\alpha) - 2R/LQ \cos \alpha) \right]$$



Resolução:

$$\begin{cases} \frac{\overline{OB}}{\overline{OA}} = \cos \alpha \\ \frac{\overline{OB}}{\overline{OB}} = h - R \operatorname{sen} \alpha \end{cases}$$
$$\therefore \overline{OA} = \frac{h - R \operatorname{sen} \alpha}{\cos \alpha}$$



Condição de equilíbrio do semicilindro: $f_{at} \ge N \cos \alpha$.

Da dinâmica, vem:

$$N_1 = P + N \operatorname{sen} \alpha$$

$$f_{at} = \mu \cdot N_1$$

$$\mu(P+N \operatorname{sen} \alpha) \geq N \cos \alpha$$

$$\mu \ge \frac{N \cos \alpha}{P + N \operatorname{sen} \alpha} \qquad (1)$$

Condição de equilíbrio da barra:

$$\sum M_0 = 0$$

$$N \cdot \overline{OA} - Q \cdot \frac{L}{2} \operatorname{sen} \alpha = 0$$

$$N = \frac{QL \operatorname{sen} \alpha}{2\overline{OA}}$$

$$N = \frac{QL \sin \alpha \cos \alpha}{2 \left(\frac{h - R \sin \alpha}{\cos \alpha} \right)}$$

$$N = \frac{QL \sin \alpha \cos \alpha}{2(h - R \sin \alpha)}$$

Substituindo N em μ , vem:

$$\mu \ge \frac{\frac{QL \sec \alpha \cos^2 \alpha}{2(h - R \sec \alpha)}}{P + \frac{QL \sec^2 \alpha \cos \alpha}{2(h - R \sec \alpha)}} = \frac{QL \sec \alpha \cos^2 \alpha}{2Ph - 2PR \sec \alpha + QL \sec^2 \alpha \cos \alpha}$$

$$\mu \ge \frac{\cos \alpha}{\frac{2Ph}{QL \sin \alpha \cos \alpha} - \frac{2PR \sin \alpha}{QL \sin \alpha \cos \alpha} + \sin \alpha}$$

$$\mu \ge \frac{\cos \alpha}{\sin \alpha + 2P \left(\frac{2h}{LQ \sin 2\alpha} - \frac{R}{LQ \cos \alpha}\right)}$$

Alternativa C

Um elétron é acelerado do repouso através de uma diferença de potencial V e entra numa região na qual atua um campo magnético, onde ele inicia um movimento ciclotrônico, movendo-se num círculo de raio $R_{\scriptscriptstyle E}$ com período $T_{\scriptscriptstyle E}$. Se um próton fosse acelerado do repouso através de uma diferença de potencial de mesma magnitude e entrasse na mesma região em que atua o campo magnético, poderíamos afirmar sobre seu raio R_p e período T_p que

- A) $R_P = R_E \ e \ T_P = T_E$.
- B) $R_P > R_E \in T_P > T_E$.
- C) $R_P > R_E \in T_P = T_E$.
- D) $R_P < R_E = T_P = T_E$.
- E) $R_P = R_E \in T_P < T_E$.

Resolução:

Para o elétron acelerado do repouso até a velocidade $v_{\scriptscriptstyle E}$ temos:

$$\tau = \Delta E_{i}$$

$$eV = \frac{m_E v_E^2}{2} :: v_E = \sqrt{\frac{2eV}{m_E}}$$

Quando entra no campo B:

$$F_M = F_{cn}$$

$$ev_EB = \frac{m_E \cdot v_E^2}{R_E} \therefore R_E = \frac{m_E v_E}{eB} = \frac{m_E}{eB} \sqrt{\frac{2eV}{m_E}}$$

$$\therefore R_E = \sqrt{\frac{2m_E V}{eB}}$$

e para o período teremos:

$$v_E = \frac{2\pi R_E}{T_E} : T_E = 2\pi \cdot \frac{R_E}{v_E}$$

$$v_E = \frac{2\pi R_E}{T_E} \therefore T_E = 2\pi \cdot \frac{R_E}{v_E}$$
$$\therefore T_E = 2\pi \sqrt{\frac{2m_P V}{eB}} \cdot \sqrt{\frac{m_E}{2eV}} = 2\pi \frac{m_E}{eB}$$

Analogamente para o próton:

$$R_P = \sqrt{\frac{2m_p V}{eB}}, \ T_P = 2\pi \frac{m_P}{eB}$$

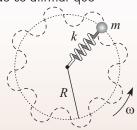
E, já que $m_P > m_E$, então:

$$R_P > R_E \in T_P > T_E$$

Alternativa B

Questão 09

Considere um oscilador harmônico simples composto por uma mola de constante elástica k, tendo uma extremidade fixada e a outra acoplada a uma partícula de massa m. O oscilador gira num plano horizontal com velocidade angular constante ω em torno da extremidade fixa, mantendo-se apenas na direção radial, conforme mostra a figura. Considerando R_0 a posição de equilíbrio do oscilador para $\omega = 0$, pode-se afirmar que



- A) o movimento é harmônico simples para qualquer que seja velocidade angular ω .
- B) o ponto de equilíbrio é deslocado para $R < R_0$.
- C) a freqüência do MHS cresce em relação ao caso de $\omega = 0$.
- D) o quadrado da freqüência do MHS depende linearmente do quadrado da velocidade angular.
- E) se a partícula tiver carga, um campo magnético na direção do eixo de rotação só poderá aumentar a freqüência do MHS.

Para a velocidade angular $\omega \neq 0$, temos:

$$k(R-R_0) = m\omega^2 \cdot R$$

$$\therefore \omega^2 = \frac{k}{m} \cdot \left(1 - \frac{R_0}{R}\right)$$

E, para um referencial não inercial de velocidade angular ω , temos:

$$F = -\left(k - m\omega^2\right) \cdot \Delta x$$

Assim:

$$F_R = -(k - m\omega^2) \cdot \Delta x = -m(\omega')^2 \cdot \Delta x$$

onde ω^{\prime} é a frequência angular do MHS.

$$Logo: (\omega')^2 = \frac{k}{m} - \omega^2$$

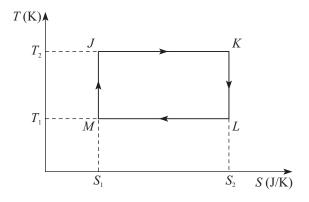
$$\therefore f^2 = \frac{k}{4\pi^2 m} - \frac{\omega^2}{4\pi^2}$$

$$\therefore f^2 = f_0^2 - \frac{\omega^2}{4\pi^2}$$

Alternativa D

Questão 10

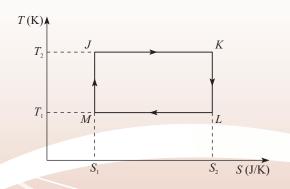
Uma máquina térmica opera segundo o ciclo JKLMJ mostrado no diagrama T-S da figura. Pode-se afirmar que



- A) o processo JK corresponde a uma compressão isotérmica.
- B) o trabalho realizado pela máquina em um ciclo é $W = (T_2 T_1)(S_2 S_1)$.
- C) o rendimento da máquina é dado por $\eta = 1 \frac{T_2}{T_1}$.
- D) durante o processo LM uma quantidade de calor $\mathcal{Q}_{LM} = T_1 \left(S_2 S_1\right)$ é absorvida pelo sistema.
- E) outra máquina térmica que opere entre T_2 e T_1 poderia eventualmente possuir um rendimento maior que a desta.

Resolução:

O ciclo corresponde a um sistema reversível – Carnot.



A transformação JK é uma expansão isotérmica.

KL e MJ são adiabáticas

$$\Delta S = \frac{Q_R}{T_2} \Rightarrow \quad Q_R = \left(S_2 - S_1\right) \cdot T_2 \\ Q_C = \left(S_2 - S_1\right) \cdot T_1 \\ \end{pmatrix} \text{ para as isotérmicas.}$$

$$Q_C = \left(S_2 - S_1\right) \cdot T_1 \\ W = Q_R - Q_C = \left(S_2 - S_1\right) T_2 - \left(S_2 - S_1\right) T_1 = \left(S_2 - S_1\right) \left(T_2 - T_1\right) \\ \eta = 1 - \frac{T_1}{T_2} \quad \text{Para Carnot}$$

Alternativa B

▶ Questão 11

Um feixe luminoso vertical, de 500 nm de comprimento de onda, incide sobre uma lente plano-convexa apoiada numa lâmina horizontal de vidro, como mostra a figura. Devido à variação da espessura da camada de ar existente entra a lente e a lâmina, torna-se visível sobre a lente uma sucessão de anéis claros e escuros, chamados de anéis de Newton. Sabendo-se que o diâmetro do menor anel escuro mede 2 mm, a superfície convexa da lente deve ter um raio de

- A) 1,0 m.
- B) 1,6 m.
- C) 2,0 m
- D) 4,0 m
- E) 8,0 m

Resolução:

Anéis de Newton $\lambda = 500 \, \text{nm}$

A interferência que se observa é entre os raios que refletem na face convexa da lente e os que refletem na lâmina de vidro inferior. Sabemos que ao refletir de um meio com maior velocidade contra outro de menor velocidade, há uma inversão de fase na luz e vice-versa.

Assim, os feixes que interferem têm defasagem de $180^{\circ} \left(\frac{\lambda}{2}\right)$, o que dá um ponto central escuro. O primeiro anel escuro corresponde a uma diferença de caminho $\Delta l = \lambda$.

$$\theta \rightarrow 0^{\circ} \Rightarrow \overline{AC} // \overline{BD} AB \cong CD$$

C e D são pontos escuros. $BD = \frac{\Delta l}{2} = \frac{\lambda}{2}$

Pitágoras no ΔOAB

$$R^2 = \left(R - \frac{\lambda}{2}\right)^2 + \left(AB\right)^2$$

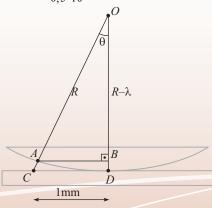
$$R^2 = R^2 - \lambda R + \frac{\lambda^2}{4} + AB^2$$

$$\lambda R = \frac{\lambda^2}{4} + AB^2$$

$$R = \frac{\lambda}{4} + \frac{AB^2}{\lambda}$$

$$R = \frac{500 \cdot 10^{-9}}{4} + \frac{\left(1 \cdot 10^{-3}\right)^2}{500 \cdot 10^{-9}}$$

$$R = 125 \cdot 10^{-9} + \frac{1 \cdot 10^{-6}}{0.5 \cdot 10^{-6}} = 2,0 \text{ m}$$



Alternativa C

Considere o modelo de flauta simplificado mostrado na figura, aberta na sua extremidade D, dispondo de uma abertura em A (próxima à boca), um orifício em B e outro em C. Sendo $\overline{AD} = 34,00$ cm, $\overline{AB} = \overline{BD}$, $\overline{BC} = \overline{CD}$ e a velocidade do som de 340,0 m/s, as frequências esperadas nos casos: (i) somente o orifício C está fechado, e (ii) os orifícios B e C estão fechados, devem ser, respectivamente

- A) 200 Hz e 1000 Hz.
- B) 500 Hz e 1000 Hz.
- C) 1000 Hz e 500 Hz.
- D) 50 Hz e 100 Hz.
- E) 10 Hz e 5 Hz.

Vista superior				Corte longitudinal		
A	B	C	\underline{D}	_A	BC	<u>, </u>
	0	0				

Resolução:

i) com
$$C$$
 fechado temos:
$$\frac{A}{\lambda/2} = \frac{B}{\lambda/2}$$

$$\overline{AB} = \frac{\lambda}{2} = 17 \,\mathrm{cm} : \lambda = 34 \,\mathrm{cm}$$

$$\therefore v = \lambda f$$

$$\therefore f = \frac{340}{34 \cdot 10^{-2}} = 1000 \,\text{Hz}$$

ii) com
$$B \in C$$
 fechados:
$$A \qquad D$$

$$\overline{AD} = \frac{\lambda}{2} = 34 \,\mathrm{cm}$$
 : $\lambda = 68 \,\mathrm{cm}$

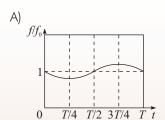
$$\therefore v = \lambda f$$

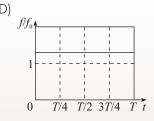
$$\therefore f = \frac{340}{68 \cdot 10^{-2}} = 500 \,\text{Hz}$$

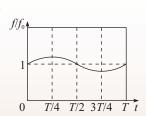
Alternativa C

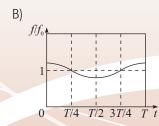
▶ Questão 13

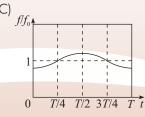
Uma jovem encontra-se no assento de um carrossel circular que gira a uma velocidade angular constante com período T. Uma sirene posicionada fora do carrossel emite um som de freqüência f_o em direção ao centro de rotação. No instante t=0, a jovem está à menor distância em relação à sirene. Nesta situação, assinale a melhor representação da frequência f ouvida pela jovem.

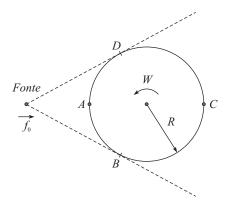












 $\operatorname{Em} t = 0$, a jovem está em A. Como nesta posição não há aproximação o afastamento da fonte, em t = 0 e $f = f_o$. O mesmo ocorre em C.

A menor frequência ocorre em B, quando a velocidade de afastamento é máxima e o maior frequência ocorre em D, quando a velocidade de aproximação é máxima.

Na figura acima, o tempo para ir de A a B é menor que aquele para ir de B a C. Mas se considerarmos a fonte muito distante, podemos considerar que o gráfico correto é o da letra A.

Alternativa A

Questão 14

Considere as cargas elétricas $q_1 = 1C$, situada em x = -2 m, e $q_2 = -2C$, situada em x = -8 m. Então, o lugar geométrico dos pontos de potencial nulo é

11

A) uma esfera que corta o eixo x nos pontos x = -4 m e x = 4 m.

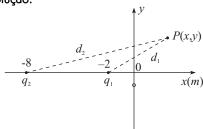
B) uma esfera que corta o eixo x nos pontos x = -16 m e x = 16 m.

C) um elipsoide que corta o eixo x nos pontos x = -4 m e x = 16 m.

D) um hiperboloide que corta o eixo x nos pontos x = -4 m.

E) um plano perpendicular ao eixo x que o corta no ponto x=-4 m.

Resolução:



$$q_1 = 1C$$

$$V_1 = \frac{Kq_1}{d_1} \quad V_2 = \frac{Kq_2}{d_2}$$

$$q_2 = -2C$$

$$V = V_1 + V_2 = 0 \text{ (potencial resultante)}$$

$$\frac{Kq_1}{d_1} + \frac{Kq_2}{d_2} = 0 \qquad \frac{1}{d_1} + \frac{(-2)}{d_2} = 0$$

$$d_2 = 2d_1 \qquad d_1 = \sqrt{(x+2)^2 + y^2}$$

$$d_2^2 = 4d_1^2 \qquad d_2 = \sqrt{(x+8)^2 + y^2}$$

$$(x+8)^2 + y^2 = 4(x+2)^2 + 4y^2$$

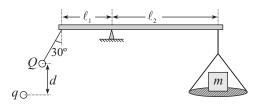
$$x^2 + 16x + 64 + y^2 = 4x^2 + 16x + 16 + 4y^2$$

$$3x^2 + 3y^2 = 48 \Rightarrow x^2 + y^2 = 16$$

Equação de uma circunferência (esfera no espaço)

Alternativa A

Considere uma balança de braços desiguais, de comprimentos ℓ_1 e ℓ_2 , conforme mostra a figura. No lado esquerdo encontra-se pendurada uma carga de magnitude Q e massa desprezível, situada a uma certa distância de outra carga, q. No lado direito encontra-se uma massa m sobre um prato de massa desprezível. Considerando as cargas como puntuais e desprezível a massa do prato da direita, o valor de q para equilibrar a massa m é dado por.



A)
$$-mg\ell_2d^2/(k_0Q\ell_1)$$
.

D)
$$-2mg\ell_2d^2/\left(\sqrt{3}k_0Q\ell_1\right)$$
.

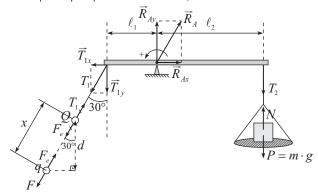
B)
$$-8mg\ell_2d^2/(k_0Q\ell_1)$$
.

E)
$$-8mg\ell_2 d^2/(3\sqrt{3}k_0Q\ell_1)$$
.

C)
$$-4mg\ell_2d^2/(3k_0Q\ell_1)$$
.

Resolução:

Para que haja equilíbrio no sistema, as esferas devem sofrer atração (logo apresentam sinais contrários).



Bloco em equilíbrio $T_2=N=mg$, N=P=mg .

$$\Sigma M_A = 0$$

Equilíbrio rotacional em torno de
$$A$$
, logo:
$$\Sigma M_A = 0 \\ + T_{1y} \cdot \ell_1 + R_A \cdot O - T_2 \cdot \ell_2 = 0 \\ + T_{1y} = \frac{\ell_2}{\ell_1} \cdot T_2 \\ \Rightarrow T_1 \cos 30^\circ = \frac{\ell_2 \, mg}{\ell_1} \\ \Rightarrow T_1 = \frac{2\sqrt{3}\ell_2 mg}{3\ell_1}$$

Como Q tem massa desprezível, o fio estica na direção da força elétrica, assim, pelo equilíbrio de Q, temos:

$$T_1 = Fe$$
; mas $T_1 = \frac{2\sqrt{3}\ell_2 mg}{3\ell_1}$

$$Fe = \frac{K_0 Qq}{x^2}$$

$$\cos 30^\circ = \frac{d}{x} \Rightarrow x = \frac{d}{\sqrt{3}/2} = \frac{2\sqrt{3}d}{3}$$

$$\frac{K_0 Q \cdot |q|}{\frac{4}{3} d^2} = \frac{2\sqrt{3}\ell_2 mg}{3\ell_1}$$

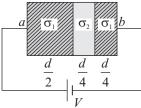
$$|q| = \frac{4d^2}{3K_0Q} \cdot \frac{2\sqrt{3}\ell_2 mg}{3\ell_1}$$

$$|q| = \frac{8mg\ell_2 d^2}{3\sqrt{3} K_0 Q\ell_1}$$

$$\Rightarrow q = -\frac{8mg\ell_2 d^2}{3\sqrt{3}K_0Q\ell_1}$$

Alternativa E

A figura mostra três camadas de dois materiais com condutividade σ_1 e σ_2 , respectivamente. Da esquerda para a direita, temos uma camada do material com condutividade σ_1 , de largura d/2, seguida de uma camada do material de condutividade σ_2 , de largura d/4, seguida de outra camada do primeiro material de condutividade σ_1 , de largura d/4. A área transversal é a mesma para todas as camadas e igual a A. Sendo a diferença de potencial entre os pontos a e b igual a V, a corrente do circuito é dada por



- A) $4VA/d(3\sigma_1 + \sigma_2)$.
- B) $4VA/d(3\sigma_2 + \sigma_1)$.
- C) $4VA\sigma_1\sigma_2/d(3\sigma_1+\sigma_2)$.
- D) $4VA\sigma_1\sigma_2/d(3\sigma_2+\sigma_1)$.
- E) $AV(6\sigma_1 + 4\sigma_2)/d$.

Resolução:

A condutividade de um material é o inverso da resistividade $\sigma = \frac{1}{2}$

Para um resistor de formato prismático, temos:

$$R = \rho \frac{L}{A} \implies R = \frac{L}{\sigma A}$$

$$R = \rho \frac{L}{A} \implies R = \frac{L}{\sigma A}$$

$$R_1 = \frac{d/2}{\sigma_1 A} = \frac{d}{2\sigma_1 A}$$

$$R_2 = \frac{d/4}{\sigma_2 A} = \frac{d}{4\sigma_2 A}$$

$$R_3 = \frac{d/4}{\sigma_1 A} = \frac{d}{4\sigma_1 A}$$

$$R_{eq} = R_1 + R_2 + R_3$$

$$R_{eq} = \frac{d}{A} \left(\frac{1}{2\sigma_{1}} + \frac{1}{4\sigma_{2}} + \frac{1}{4\sigma_{1}} \right)$$

$$R_{eq} = \frac{d}{A} \left(\frac{2\sigma_2 + \sigma_1 + \sigma_2}{4\sigma_1\sigma_2} \right)$$

$$R_{eq} = \frac{d}{A} \cdot \frac{\sigma_1 + 3\sigma_2}{4\sigma_1\sigma_2}$$

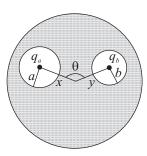
Pela lei de Ohm, temos:

$$V = R_{eq} \cdot i \implies i = \frac{V}{R_{eq}} = V \frac{A}{d} \cdot \frac{4\sigma_1 \sigma_2}{\sigma_1 + 3\sigma_2}$$

$$i = \frac{4VA\sigma_1\sigma_2}{d(\sigma_1 + 3\sigma_2)}$$

Alternativa D

Uma esfera condutora de raio R possui no seu interior duas cavidades esféricas, de raio a e b, respectivamente, conforme mostra a figura. No centro de uma cavidade há uma carga puntual q_a e no centro da outra, uma carga também puntual q_b , cada qual distando do centro da esfera condutora de x e y, respectivamente. É correto afirmar que:



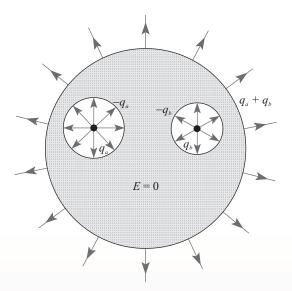
- A) a força entre as cargas q_a e q_b é $k_0q_aq_b/(x^2+y^2-2xy\cos\theta)$.
- B) a força entre as cargas q_a e q_b é nula.
- C) não é possível determinar a força entre as cargas, pois não há dados suficientes.
- D) se nas proximidades do condutor houvesse uma terceira carga, q_c , esta não sentiria força alguma.
- E) se nas proximidades do condutor houvesse uma terceira carga, q_c , a força entre q_a e q_b seria alterada.

Resolução:

Devido ao fato de existir um meio condutor entre as cargas q_a e q_b e ele estar em equilíbrio eletrostático, o campo elétrico no condutor é nulo. Assim, a carga q_b não sente os efeitos do campo criado por q_a e vice-versa.

Como
$$Fe = q \cdot E \implies F_a = F_b = 0$$

Considerando q_a e q_b positivas. (apenas exemplificando)

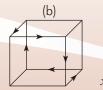


Alternativa B

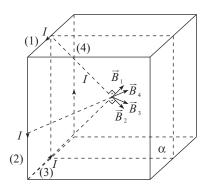
Questão 18

Uma corrente I flui em quatro das arestas do cubo da figura (a) e produz no seu centro um campo magnético de magnitude B na direção y, cuja representação no sistema de coordenadas é (0, B, 0). Considerando um outro cubo (figura (b)) pelo qual uma corrente de mesma magnitude I flui através do caminho indicado, podemos afirmar que o campo magnético no centro desse cubo será dado por:

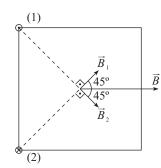
- A) (-B, -B, -B).
- B) (-B, B, B).
- C) (B, B, B).
- D) (0, 0, B).
- E) (0, 0, 0).



Vamos considerar que em cada aresta existe um fio infinito produzindo campo magnético no centro do cubo. Assim:



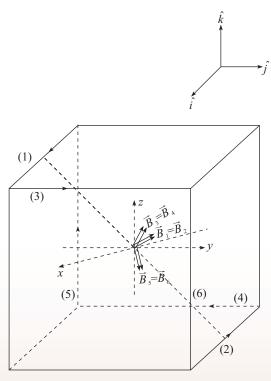
Fazendo um corte num plano α mediano no cubo, temos:



Pela simetria do problema, temos que $B_1=B_2=B_3=B_4$ e $B=4\cdot B_1\cdot\cos 45^\circ$

$$B = 4 \cdot B_1 \cdot \frac{\sqrt{2}}{2}$$

$$B_1 = \frac{B}{2\sqrt{2}} = \frac{B\sqrt{2}}{4}$$



$$\vec{B}_{1} = \vec{B}_{2} = B_{1} \frac{\sqrt{2}}{2} \hat{j} + B_{1} \frac{\sqrt{2}}{2} \hat{k}$$

$$\vec{B}_{3} = \vec{B}_{4} = -B_{1} \frac{\sqrt{2}}{2} \hat{i} + B_{1} \frac{\sqrt{2}}{2} \hat{k}$$

$$\vec{B}_{3} = \vec{B}_{4} = -B_{1} \frac{\sqrt{2}}{2} \hat{i} + B_{2} \frac{\sqrt{2}}{2} \hat{k}$$

$$\vec{B}_5 = \vec{B}_6 = -B_1 \frac{\sqrt{2}}{2} \hat{i} + B_1 \frac{\sqrt{2}}{2} \hat{j}$$

$$\vec{B}_1 + \vec{B}_2 + \vec{B}_3 + \vec{B}_4 + \vec{B}_5 + \vec{B}_6 = B_1 \left(\frac{\sqrt{2}}{2} \hat{j} + \frac{\sqrt{2}}{2} \hat{k} \right) \cdot 2 + B_1 \left(-\frac{\sqrt{2}}{2} \hat{i} + \frac{\sqrt{2}}{2} \hat{k} \right) \cdot 2$$

$$\begin{split} &+B_1\Biggl(-\frac{\sqrt{2}}{2}\hat{i}+\frac{\sqrt{2}}{2}\hat{j}\Biggr)\cdot 2\!\!\!/ = B_1\cdot\sqrt{2}\cdot \Bigl(\hat{j}+\hat{k}-\hat{i}+\hat{k}-\hat{i}+\hat{j}\Bigr)\\ &\overrightarrow{B}_R = B_1\sqrt{2}\cdot \Bigl(-2\hat{i}+2\hat{j}+2\hat{k}\Bigr)\\ &\overrightarrow{B}_R = 2B_1\sqrt{2}\cdot \Bigl(-\hat{i}+\hat{j}+\hat{k}\Bigr)\\ &\text{mas } B_1 = \frac{B\sqrt{2}}{4}\\ &\overrightarrow{B}_R = 2\sqrt{2}\cdot \frac{B\sqrt{2}}{4}\Bigl(-\hat{i}+\hat{j}+\hat{k}\Bigr)\\ &\overrightarrow{B}_R = -B\hat{i}+B\hat{j}+B\hat{k} \end{split}$$

Alternativa B

▶ Questão 19

 $\vec{B}_R = (-B, B, B)$

Considere um aparato experimental composto de um solenóide com n voltas por unidade de comprimento, pelo qual passa uma corrente I, e uma espira retangular de largura ℓ , resistência R e massa m presa por um de seus lados a uma corda inextensível, não condutora, a qual passa por uma polia de massa desprezível e sem atrito, conforme a figura. Se alguém puxar a corda com velocidade constante v, podemos afirmar que a força exercida por esta pessoa é igual a:

A) $(\mu_0 n I \ell)^2 v/R + mg$ com a espira dentro do solenoide.

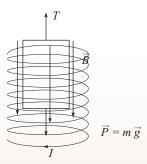
B) $(\mu_0 n I \ell)^2 v/R + mg$ com a espira saindo do solenoide.

C) $(\mu_0 n I \ell)^2 v/R + mg$ com a espira entrando no solenoide.

D) $\mu_0 nI^2 \ell + mg$ com a espira dentro do solenoide.

E) mg e independe da posição da espira com relação ao solenoide.

Resolução:



A configuração do experimento nos permite concluir que o fluxo magnético devido ao solenoide na espira é sempre zero, já que as linhas de campo magnético são paralelas ao plano da espira. Assim não há interação magnética entre a espira e o solenoide.

$$\Rightarrow MRU \Rightarrow \overrightarrow{F}_R = \overrightarrow{O} \Rightarrow T = mg$$

para qualquer posição da espira.

Alternativa E

► Questão 20

No processo de fotossíntese, as moléculas de clorofila do tipo a nas plantas verdes apresentam um pico de absorção da radiação eletromagnética no comprimento de onda $\lambda = 6.80 \cdot 10^{-7}$ m. Considere que a formação de glicose ($C_6H_{12}O_6$) por este processo de fotossíntese é descrita, de forma simplificada, pela reação:

$$6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$$

Sabendo-se que a energia total necessária para que uma molécula de CO_2 reaja é de $2,34 \cdot 10^{-18} \, \mathrm{J}$, o número de fótons que deve ser absorvido para formar 1 mol de glicose é:

- A) 8.
- B) 24.
- C) 48.
- D) 120.
- E) 240.

Resolução:

* Houve um equívoco na questão. Ele quer saber para 1 molécula de glicose e não 1 mol.

Pico de absorção:
$$\lambda = 6,80 \cdot 10^{-7} \text{ m}$$

 $6CO_2 + 6H_2O \longrightarrow C_6H_{12}O_6 + 6O_2$

Energia para que CO_2 reaja é $2,34\cdot 10^{-18}\,\mathrm{J}$

6 moléculas de $CO_2 \rightarrow 1$ molécula $C_6H_{12}O_6$

$$E_{total} = 6 \cdot 2,34 \cdot 10^{-18} = 1,404 \cdot 10^{-17} \text{ J}$$

$$E_{total} = n \cdot E_{fōton} = n \cdot \frac{hc}{\lambda}$$

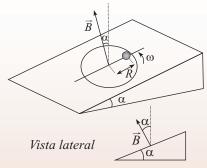
$$n = \frac{1,404 \cdot 10^{-17} \cdot 6,80 \cdot 10^{-7}}{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^{8}} = 48,07$$

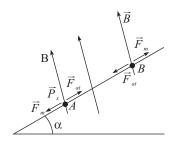
n = 48 fótons

Alternativa C

▶ Questão 21

Um disco, com o eixo de rotação inclinado de um ângulo α em relação à vertical, gira com velocidade angular ω constante. O disco encontra-se imerso numa região do espaço onde existe um campo magnético \vec{B} uniforme e constante, orientado paralelamente ao eixo de rotação do disco. Uma partícula de massa m e carga q>0 encontra-se no plano do disco, em repouso em relação a este, e situada a uma distância R do centro, conforme a figura. Sendo μ o coeficiente de atrito da partícula com o disco e g a aceleração da gravidade, determine até que valor de ω o disco pode girar de modo que a partícula permaneça em repouso.





Observe que pela vista lateral notamos que:

 $\mathsf{Em}\,A$:

$$F_{cp} = F_{at} - F_m - P_x$$
 \therefore $F_{at} = F_{cp} + F_m + P_x$

Em B

$$F_{cp} = P_x + F_{at} - F_m \quad \therefore \quad F_{at} = F_{cp} + F_m - P_x$$

Sendo assim a força atrito é maior em A, e quando atinge seu valor máximo temos:

$$F_{cp} = F_{at} - F_m - P_x$$

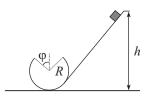
$$m\omega^2 \cdot R = M \cdot mg \cos \theta - q(\omega R) \cdot B - mg \sin \theta$$

$$\therefore mR\omega^2 + qBR\omega = mg\left(\sin\theta - M\cos\theta\right) = 0$$

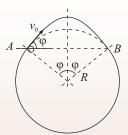
$$\omega = \frac{\sqrt{q^2 B^2 R^2 - 4m^2 g^2 R \left(\sin \theta - M \cos \theta\right)} - qBR}{2mR}$$

Questão 22

Um pequeno bloco desliza sobre uma rampa e logo em seguida por um "loop" circular de raio R, onde há um rasgo de comprimento de arco $2R\phi$, como ilustrado na figura. Sendo g a aceleração da gravidade e desconsiderando qualquer atrito, obtenha a expressão para a altura inicial em que o bloco deve ser solto de forma a vencer o rasgo e continuar em contato com o restante da pista.



Resolução:



Observe que quando abandona a pista em A, a partícula deve fazer um lançamento oblíquo de alcance \overline{AB} . Sendo que $\overline{AB} = 2R \operatorname{sen} \varphi$ (1). O alcance pode ser calculado por:

$$A = \frac{V_0^2}{g} \cdot \sin 2\phi \ (2)$$

lgualando (1) e (2):

$$\frac{V_0^2}{g} \cdot 2 \operatorname{sen} \varphi \cdot \cos \varphi = 2R \operatorname{sen} \varphi :$$

$$V_0^2 = \frac{Rg}{\cos \varphi}$$

 $\it E$, conservando energia mecânica na descida desde $\it h$:

$$E_{M_0} = E_{M_f}$$

$$mgh = mg(R + R\cos\varphi) + \frac{mV_0^2}{2}$$

$$\therefore gh = gR(1+\cos\varphi) + \frac{Rg}{2\cos\varphi}$$

$$\therefore h = R \left(1 + \cos \varphi + \frac{1}{2\cos \varphi} \right)$$

Questão 23

Uma massa m_1 com velocidade inicial V_0 colide com um sistema massa-mola m_2 e constante elástica k, inicialmente em repouso sobre uma superfície sem atrito, conforme ilustra a figura.

Determine o máximo comprimento de compressão da mola, considerando desprezível a sua massa.

Resolução:

Já que a colisão é composta por uma aproximação seguida de um afastamento, a compressão máxima ocorre quanto as massas não se aproximam nem afastam, ou seja, possuem a mesma velocidade.

i) Conservando quantidade de movimento:

$$\sum Q_0 = \sum Q_f$$

$$m_1 \cdot v_0 + m_2 \cdot 0 = (m_1 + m_2) \cdot v$$

$$\therefore v = \frac{m_1}{(m_1 + m_2)} \cdot v_0$$

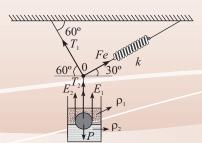
ii) Conservando energia mecânica:

$$\frac{m_1 v_0^2}{2} = \frac{\left(m_1 + m_2\right) v^2}{2} + \frac{k x^2}{2} \quad \therefore \quad m_1 v_0^2 = \left(m_1 + m_2\right) \cdot \frac{m_1^2 \cdot v_0^2}{\left(m_1 + m_2\right)} + k x^2 \quad \therefore \quad k x^2 = v_0^2 \left(m_1 - \frac{m_1^2}{m_1 + m_2}\right) \quad \therefore \quad x = v_0 \cdot \sqrt{\frac{m_1 m_2}{k \left(m_1 + m_2\right)}}$$

▶ Questão 24

Uma esfera maciça de massa específica ρ e volume V está imersa entre dois líquidos, cujas massas específicas são ρ_1 e ρ_2 , respectivamente, estando suspensa por uma corda e uma mola de constante elástica k, conforme mostra a figura. No equilíbrio, 70% do volume da esfera está no líquido 1 a 30% no líquido 2. Sendo g a aceleração da gravidade, determine a força de tração da corda.

Resolução:



Equilíbrio da esfera

$$E_1 + E_2 + T_2 = P$$

$$\rho_1 \cdot g \ 0,7V + \rho_2 \cdot g \ 0,3V + T_2 = \rho g V$$

$$T_2 = (\rho - 0.7 \rho_1 - 0.3 \rho_2) gV$$

Equilíbrio do ponto O, indicado na figura.

$$\begin{cases} T_1 \cos 60^{\circ} = F_e \cdot \cos 30^{\circ} \\ T_1 \sin 60^{\circ} + F_e \sin 30^{\circ} = T_2 \end{cases}$$
 (1)

Como $F_e = kx$ e substituindo T_2 em (1), vem:

$$\begin{cases} T_1 = Rx\sqrt{3} \\ T_1\sqrt{3} + kx = 2(\rho - 0.7\rho_1 - 0.3\rho_2)gV \end{cases}$$

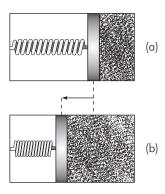
Resolvendo o sistema, é possível encontrar T_1 :

$$T_1\sqrt{3} + \frac{T_1}{\sqrt{3}} = 2(\rho - 0.7\rho_1 - 0.3\rho_2)gV$$

$$\frac{4T_1\sqrt{3}}{3} = 2(\rho - 0.7\rho_1 - 0.3\rho_2)gV : T_1 = \frac{\sqrt{3}}{2}(\rho - 0.7\rho_1 - 0.3\rho_2)gV$$

► Questão 25

Uma parte de um cilindro está preenchida com um mol de um gás ideal monoatômico a uma pressão P_0 e temperatura T_0 . Um êmbolo de massa desprezível separa o gás da outra seção do cilindro, na qual há vácuo e uma mola em seu comprimento natural presa ao êmbolo e à parede oposta do cilindro, como mostra a figura (a). O sistema está termicamente isolado e o êmbolo, inicialmente fixo, é então solto, deslocando-se vagarosamente até passar pela posição de equilíbrio, em que a sua aceleração é nula e o volume ocupado pelo gás é o dobro do original, conforme mostra a figura (b). Desprezando os atritos, determine a temperatura do ás na posição de equilíbrio em função da sua temperatura inicial.



Resolução:

Na situação inicial temos:

$$P_0 \cdot V_0 = n \cdot RT_0$$
, ou:

$$P_0 \cdot A \cdot \ell = RT_0 \qquad (1)$$

Na situação final temos: $P \cdot A \cdot 2\ell = RT$ (2)

De (1) e (2):
$$\frac{P}{P_0} = \frac{T}{2T_0}$$

E estando na posição de equilíbrio: $P \cdot A = k \cdot \ell$ (3)

Por fim, sendo a transformação adiabática temos:

$$Q=0$$
 e $Q=\tau+\Delta U$ (1ª Lei da termodinâmica)

Que resulta:

$$\Delta U = -\tau$$
 , onde $\tau = \frac{k\ell^2}{2}$ (recebido pela mola).

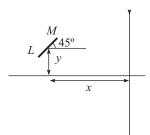
$$\frac{3}{2}nR(T-T_0) = -\frac{1}{2}\left(\frac{PA}{\ell}\right)\ell^2$$

E, substituindo (1), (2) e (3):

$$\therefore \frac{3}{2}R(T-T_0) = -\frac{1}{2}PA \cdot \frac{RT_0}{P_0A} = -\frac{1}{2}\left(\frac{P}{P_0}\right) \cdot RT_0 \quad \therefore \quad 3(T-T_0) = -\frac{1}{2}\left(\frac{T}{2T_0}\right) \cdot T_0 \quad \therefore \quad T = \frac{6}{7}T_0$$

Questão 26

A figura mostra uma barra LM de $10\sqrt{2}$ cm de comprimento, formando um ângulo e 45° com a horizontal, tendo o seu centro situado a x=30,0 cm de uma lente divergente, com distância focal igual a 20,0 cm, e a y=10,0 cm acima do eixo ótico da mesma. Determine o comprimento da imagem da barra e faça um desenho esquemático para mostrar a orientação da imagem.



Admitindo as condições de nitidez de Gauss e sem perder em generalização, podemos redesenhar de forma: Em relação ao novo eixo secundário temos:

$$f_{s} = -20 \text{ cm}$$

$$p = 20\sqrt{2}$$
 cm

$$\frac{1}{f_s} = \frac{1}{p} + \frac{1}{p'} \therefore \frac{1}{-20} = \frac{1}{20\sqrt{2}} + \frac{1}{p'}$$

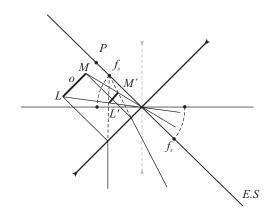
$$p' = -20(2 - \sqrt{2})$$

E, por fim:
$$\frac{i}{o} = \frac{-p'}{p}$$

$$\frac{L'M'}{LM} = \frac{-p'}{p} = \frac{20(2 - \sqrt{2})}{20\sqrt{2}}$$

$$L'M' = LM \cdot (\sqrt{2} - 1)$$

$$\therefore L'M' = 10(2 - \sqrt{2}) \text{cm}$$



Duestão 27

Derive a 3ª Lei de Kepler do movimento planetário a partir da Lei da Gravitação Universal de Newton considerando órbitas circulares.

Resolução:

Considerando a órbita circular, a força gravitacional atua como centrípeta:

$$F_G = F_{cp}$$

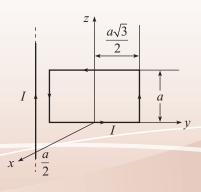
$$\frac{GMm}{R^2} = m\omega^2 R$$

$$\frac{GMm}{R^3} = m \left(\frac{2\pi}{T}\right)^2 \therefore \frac{T^2}{R^3} = \frac{4\pi^2}{GM} \quad c.q.d.$$

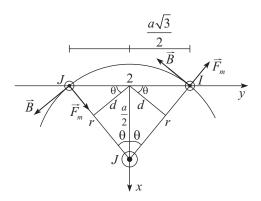
onde M é constante para todos corpos que orbitam o mesmo corpo central.

Questão 28

Considere uma espira retangular de lados $\sqrt{3a}$ e a, respectivamente, em que circula uma corrente I, e acordo com a figura. A espira pode girar livremente em torno do eixo z. Nas proximidades da espira há um fio infinito, paralelo ao eixo z, que corta o plano xy no ponto x = a/2 e y = 0. Se pelo fio passa uma corrente de mesma magnitude I, calcule o momento resultante da forma magnética sobre a espira em relação ao eixo z, quando esta encontra-se no plano yz.



Vista superior da figura:



- i) A força magnética sobre os ramos horizontais da espira é vertical, logo, seu momento em relação a z é nulo.
- ii) A força magnética sobre os ramos verticais pode ser calculada por:

$$F_m = Bi\ell \operatorname{sen} \theta :$$

$$F_m = BIa \cdot \text{sen } 90^\circ = BIa$$

Em que o campo B vale:

$$B = \frac{M_0 I}{2\pi a}$$

Assim:

$$F_m = \left(\frac{M_0 I}{2\pi a}\right) \cdot I \cdot a = \frac{M_0 I^2}{2\pi}$$

Por fim, pela figura notamos que o momento resultante pode ser calculado por:

$$M = 2 F_m \cdot d$$

Em que:

$$d = \frac{a\sqrt{3}}{2} \cdot \cos \theta = \frac{a\sqrt{3}}{2} \cdot \frac{\frac{a}{2}}{a} :$$

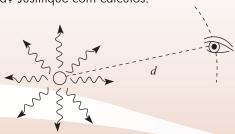
$$d = \frac{a\sqrt{3}}{4}$$

Por fim-

$$M = 2\left(\frac{M_0 I^2}{2\pi}\right) \cdot \frac{a\sqrt{3}}{4} = \frac{M_0 I^2 a\sqrt{3}}{4}$$

Questão 29

O olho humano é uma câmara com um pequeno diafragma de entrada (pupila), uma lente (cristalino) e uma superfície fotossensível (retina). Chegando à retina, os fótons produzem impulsos elétricos que são conduzidos pelo nervo ótico até o cérebro, onde são decodificados. Quando devidamente acostumada à obscuridade, a pupila se dilata até um raio de 3 mm e o olho pode ser sensibilizado por apenas 400 fótons por segundo. Numa noite muito escura, duas fontes monocromáticas, ambas com potência de $6 \cdot 10^{-5}$ W, emitem, respectivamente, luz azul ($\lambda = 475$ nm) e vermelha ($\lambda = 650$ nm) isotropicamente, isto é, em todas as direções. Desprezando a absorção de luz pelo ar e considerando a área da pupila circular, qual das duas fontes pode ser vista a uma maior distância? Justifique com cálculos.



Resolução:

Pelo modelo apresentado, podemos, com boa aproximação considerar a área da pupila (Ap) sendo igual, a uma fatia da esfera (calota) atingida pelos fótons emitidos pela fonte a que contém a pupila:

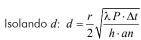
A energia emitida pela fonte vale: $\in P \cdot \Delta t$

Sendo que cada fóton possui energia: $e = hf = \frac{h \cdot c}{2}$

O número total de fótons emitidos é: $N = \frac{\epsilon}{e} = \frac{\lambda P \cdot \Delta t}{h \cdot c}$

Podemos então determinar o número de fótons que atravessam a pupila de forma:

$$\frac{n}{A_p} = \frac{N}{A_{\epsilon}} : n = N \cdot \frac{A_p}{A_{\epsilon}} = \left(\frac{\lambda P \cdot \Delta t}{h \cdot c}\right) \cdot \frac{\pi r^2}{4\pi d^2}$$

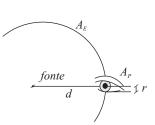


Sendo n = 400, $\Delta t = 1$ s e $P = 6 \cdot 10^{-5}$ W, temos:

Azul:
$$d_A = \frac{3 \cdot 10^{-3}}{2} \cdot \sqrt{\frac{475 \cdot 10^{-9} \cdot 6 \cdot 10^{-5}}{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8 \cdot 400}} = 898 \,\mathrm{m}$$

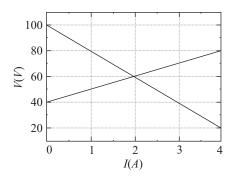
$$\text{Vermelho: } d_{\scriptscriptstyle V} = \frac{3 \cdot 10^{-3}}{2} \cdot \sqrt{\frac{650 \cdot 10^{-9} \cdot 6 \cdot 10^{-5}}{6,62 \cdot 10^{-34} \cdot 3 \cdot 10^8 \cdot 400}} = 1051 \text{m}$$

Logo: $d_V > d_A$



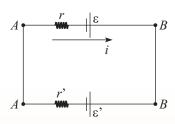
Questão 30

No gráfico ao lado estão representadas as características de um gerador, de força eletromotriz igual a ε e resistência interna r, e um receptor ativo de força contraeletromotriz ε' e resistência interna r'. Sabendo que os dois estão interligados, determine a resistência interna e o rendimento para o gerador e para o receptor.



Resolução:

Representação do circuito:



No gráfico notamos que quando a mesma voltagem aparece nos terminais do gerador e do receptor eles trabalham com i = 2A.

Equação do gerador: $V_{AB}=\varepsilon-ri$

Pelo gráfico vemos que ε = 100 V e, para i = 2A, V = 60 V. Assim: 60 = $100-r\cdot 2$ \therefore r = $20~\Omega$

Rendimento: $\eta_G = \frac{P_u}{P_T} = \frac{Ui}{\epsilon i}$ \therefore $\eta_G = \frac{60}{100} = 0,6$ (60%)

Equação do receptor: $V_{AB} = \varepsilon' + r'i$

Pelo gráfico vemos que ε ' = 40 V e, para i = 2 A, V = 60 V. Assim: 60 = 40 + r' \cdot 2 \therefore r' = 10Ω Rendimento: $\eta_R = \frac{P_V}{P_F} = \frac{\varepsilon' i}{U i}$ \therefore $\eta_R = \frac{40}{60} = 0,667$ (66,7%)

Professores

Bruno Werneck Marcelo Moraes Rodrigo Bernadelli Vinícius Miranda

Digitação e Diagramação

Leandro Bessa Márcia Santana Valdivina Pinheiro Vinícius Ribeiro

Desenhistas

Arthur Vitorino Lucas de Paula Érika Rezende Thaís Dourado

Projeto Gráfico

Mariana Fiusa Vinícius Ribeiro

Supervisão Editorial

José Diogo Rodrigo Bernadelli

Copyright@Olimpo2009

As escolhas que você fez nessa prova, assim como outras escolhas na vida, dependem de conhecimentos, competências e habilidades específicos. Esteja preparado.

www.cursoolimpo.com.br

