2017 E M

"A matemática é o alfabeto com que Deus escreveu o mundo" Galileu Galilei

Informações de Tabela Periódica

Elemento	Н	C	N	0	F	Al	Cl	Zn	Sn	I
Massa atômica (u)	1,00	12,0	14,0	16,0	19,0	27,0	35,5	65,0	118,7	127,0
Número atômico	1	6	7	8	9	13	17	30	50	53

Constantes:

Constante de Faraday = 96500 C·mol⁻¹

Constante Universal dos Gases = $82,058~\text{cm}^3 \cdot \text{atm} \cdot \text{K}^{-1} \cdot \text{mol}^{-1} = 0,082~\text{atm} \cdot \text{L} \cdot \text{K}^{-1} \cdot \text{mol}^{-1}$

Número de Avogadro: $N_{\scriptscriptstyle A}=6.0\times 10^{23}~{\rm mol^{-1}}$

$$\log 3 = 0.50$$
 $\ln 2 = 0.7$ $\sqrt{3} = 1.7$ $\sqrt{30} = 5.5$

Dados:

Massa específica do estanho = $7 \text{ g} \cdot \text{cm}^{-3}$

Calor de combustão do monóxido de carbono (a 298 K e 1 atm) = $-283 \text{ kJ} \cdot \text{mol}^{-1}$

 $T(K) = t(^{\circ}C) + 273$

Substância	СО	CO_2	O_2	N_2
Calor específico médio $C_p\left(\mathrm{kJ}\cdot\mathrm{mol}^{-1}\cdot\mathrm{K}^{-1} ight)$	0,03	0,04	0,03	0,03

▶ Questão O1

Uma amostra de 1,264 g de Nitropenta, uma substância sólida explosiva cuja fórmula estrutural é dada abaixo, é detonada num vaso fechado resistente de 0,050 dm³ de volume interno, pressurizado com a quantidade estequiométrica de oxigênio puro, a 300 K , necessária para a combustão completa. Calcule a pressão inicial do vaso, considerando o comportamento dos gases como ideal.

Resolução:

A equação que descreve a combustão da Nitropenta, é

$$1C_5H_8N_4O_{12}(s)+1O_2(g)\longrightarrow 5CO_2(g)+4H_2O(g)+1N_2(g)$$

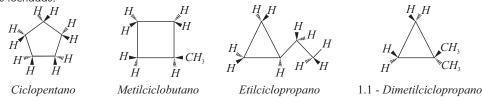
$$1 \cdot 316g \underline{\hspace{1cm}} 1 \operatorname{mol} O_2(g)$$

$$1,264g_{n} O_{2}(g)$$

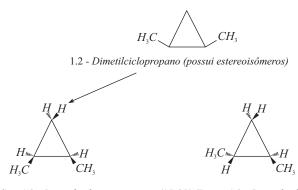
 $nO_2(g) = 0.04 \text{ mol}$ (Quantidade de $O_2(g)$ presente no vaso).

A pressão do vaso equivale a pressão da Nitropenta sólida (desprezível) $+PO_{2(i)}$.

$$P_{O_2} = \frac{nO_2 \cdot R \cdot T}{V_{\text{(recipiente)}}} = \frac{0,04 \cdot 0,082 \cdot 300}{0,05} = 1,968 \text{ atm}$$


Questão 02

Desenhe as fórmulas estruturais espaciais de todos os isômeros do dimetilciclopropano, escrevendo as respectivas nomenclaturas IUPAC.


Resolução:

Dimetilciclopropano (C_5H_{10}) .

Isômeros de cadeias fechadas:

Não Apresentam Isomeria Espacial

(1 S.2R) Cis - 1,2 - Dimetilciclopropano (1R.2R) Trans - 1,2 - Dimetilciclopropano (Meso)

$$H_{10}$$
 H_{10}
 $H_{1}C$
 H

(1S.2S) Trans - 1,2 - Dimetilciclopropano

Isômeros de cadeias abertas:

$$H C_3H$$

$$C = C$$

$$H H$$

$$Pent - 1 - eno$$

Questão 03

Tomou-se uma amostra de $130\,\mathrm{g}$ de zinco metálico para reagir com uma solução aquosa diluída de ácido clorídrico em quantidade estequiométrica. Dessa reação, observou-se a formação de gás, que foi aquecido a $227\,^{\circ}\mathrm{C}$ e transportado para um balão fechado de $50\,\mathrm{L}$. Esse balão continha, inicialmente, iodo em fase gasosa a $227\,^{\circ}\mathrm{C}$ e $3,28\,\mathrm{atm}$. Após o equilíbrio, verificou-se que a constante de equilíbrio K_c a $227\,^{\circ}\mathrm{C}$ é igual a 160. Considerando que a temperatura permaneceu constante durante o processo, determine a pressão final total no balão.

Resolução:

Calculo do número de mols de gás hidrogênio a partir da reação.

$$Zn_{(s)} + 2HCl_{(aq)} \longrightarrow ZnCl_{2(aq)} + H_{2(g)}$$

$$x = 2 \operatorname{mols} H_2$$

Calculo do número de mols de iodo contido no balão:

Sabe-se que:

$$V = 50l$$

$$T = 227^{\circ} \text{C} = 500 \text{ K}$$

$$P = 3,28 \, \text{atm}$$

$$PV = NRT$$

$$3,28 \cdot 50 = N \cdot 0,082 \cdot 500$$

$$N = \frac{3,28}{0.82}$$

$$N = 4 \,\mathrm{mols}\ I_2$$

Considerando que no balão ocorre o equilíbrio abaixo

Temos:

$$H_{2(s)} + I_{2(g)} = 2HI_{(g)} \quad Kc = 160$$

$$N^{\circ} \operatorname{mol}_{\operatorname{início}} \quad 2 \quad 4 \quad 0$$

$$NR/NF$$
 $-x$ $-x$ $2x$

$$N^{\circ} \text{mol} eq (2-x) (4-x)$$
 (2x)

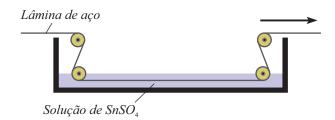
O número de mols total dentro do balão é:

$$N_T = (2-x)+(4-x)+2x$$

$$N_T = 6$$

Logo a pressão total no interior do balão pode ser calculado usando a equação de Clapeyron:

$$P_T \cdot V = NRT$$


$$P \cdot 50 = 6 \cdot 0,082 \cdot 500$$

$$P_T = 6.0,82$$

$$P_{T} = 4.92 \text{ atm}$$

▶ Questão 04

O esquema abaixo representa um projeto para uma instalação de estanhagem eletrolítica contínua de lâminas de aço alimentada por uma bobina de 1,0 m de largura.

Os dados operacionais da instalação são os seguintes:

- o eletrólito utilizado é uma solução ácida de sulfato estanoso;
- o estanho é depositado em ambas as faces da chapa;
- o potencial utilizado para a eletrólise é de $3,0\,\mathrm{V}$;
- a densidade de corrente aplicada é de 25 A/m²;
- o rendimento da deposição é de 96,5%;
- a velocidade de deslocamento da chapa é de 2 m/s;
- a espessura do filme de estanho formado em cada face deve ser de 8,48 m; e
- VIII) o diâmetro dos roletes pode ser desprezado.

Partindo desses dados, determine:

- o comprimento da lâmina imerso no eletrólito da célula; e
- o consumo de energia em kWh por km de lâmina estanhada.

Resolução:

a)

Densidade da corrente (ρ)

$$\rho = \frac{i}{\frac{A}{\text{Area}}} = \frac{q(\text{carga})}{\frac{\Delta t \cdot A}{\text{Tempo}}} \therefore q = \rho \cdot \Delta t \cdot A$$

Comprimento da Lâmina (L)

$$L = \Delta t \cdot Vx \therefore \Delta t = \frac{L}{Vx}$$
 Velocidade de Deslocamento

Volume de estanho depositado (V)

$$V = \operatorname{espessura}(e) \cdot L \cdot 2$$
 (dois lados) \cdot largura

Como
$$V = \frac{m \text{ (massa depositada)}}{d \text{ (densidade)}}$$

$$m = e \cdot L \cdot d \cdot 2$$
 , largura

Massa depositada (m)

Sendo a semirreação:
$$\mathit{Sn}^{^{2+}} + 2e^- \rightarrow \mathit{Sn}$$

$$\begin{cases} 118,7 \text{ g } Sn - - - 2 \cdot 96.500 \text{ C} \\ m - - - q \end{cases}$$

$$q = \frac{m \cdot 2 \cdot 96.500 \text{ C}}{118,7 \text{ g}}$$

Substituindo $q \in m$:

•
$$\rho \cdot \Delta t \cdot A = \frac{e \cdot L \cdot d \cdot 2 \cdot \text{largura} \cdot 2 \cdot 96.500 \text{ C}}{118,7 \cdot 10^{-3} \text{ kg}}$$

Como
$$\Delta t = \frac{L}{V}$$
 e $A = L \cdot \text{largura}$:

$$\bullet \frac{25A}{m^2} \cdot \frac{L}{\frac{2m}{5}} \cdot L \cdot 1 \text{m} = \frac{8,48 \cdot 10^{-6} \text{ m} \cdot L \frac{7 \cdot 10^3 \text{ kg}}{\text{m}^3} \cdot 2 \cdot 1 \text{m} \cdot 2 \cdot 96.500 \text{ C}}{118,7 \cdot 10^{-3} \text{ kg}}$$

$$L_1 = 15.440 \,\mathrm{m}$$
 ou $15,44 \,\mathrm{km}$

Como o rendimento foi de 96,5%, temos que considerar 100%:

$$\begin{cases} 15,44 \,\mathrm{km} - 96,5\% \\ L_2 - 100\% \\ L_2 \approx 16 \,\mathrm{km} \end{cases}$$

b)
$$L = 16 \text{ km} = 16 \cdot 10^3 \text{ m}$$

Largura = 1 m
 $V = 1 \text{ m} \times 16 \cdot 10^3 \text{ m} \cdot 2 \cdot 8,48 \cdot 10^{-6} \text{ m}$
 $V = 271,36 \cdot 10^{-3} \text{ m}^3$

Sendo a
$$d_{sn} = 7.0 \,\mathrm{g/\,cm^3} \Rightarrow 7.0 \cdot 10^3 \,\mathrm{kg/\,m^3}$$

$$1 \,\mathrm{m^3} - - - - - 7.0 \cdot 10^3 \,\mathrm{kg}$$

$$271.36 \cdot 10^{-3} \,\mathrm{m^3} - - - - - \mathrm{massa}$$

$$\mathrm{massa} = 1899.52 \,\mathrm{kg} \,\mathrm{(Sn)}$$
Sendo $\therefore Q = \frac{2 \cdot 96500 \times \mathrm{m}}{118.7}$

$$Q = \frac{2 \cdot 96500 \times 1899.52 \cdot 10^3}{118.7}$$

$$Q = 3.09 \cdot 10^9 \,\mathrm{C}$$
Cálculo de tempo:
$$\Delta t = \frac{L}{V_x} \Rightarrow \Delta t = \frac{16000 \,\mathrm{m}}{2 \,\mathrm{m \cdot s^{-1}}} = 8000 \,\mathrm{s}$$

$$Q = i \times t$$

$$i = \frac{3,09 \cdot 10^9}{8 \cdot 10^3}$$

$$i = 3.86 \cdot 10^5 \,\mathrm{A}$$

Cálculo da energia:

Energia =
$$Pot \cdot \Delta t \Rightarrow E = i \cdot V \cdot \Delta t$$

$$E = 3,86 \cdot 10^5 \cdot 3 \cdot 8000$$

$$E = 9.27 \cdot 10^9 \,\text{J}$$

$$1 \text{KWh} = \frac{1000 \text{ J}}{\text{s}} \cdot 3600 \text{ s} = 3,6 \cdot 10^6 \text{ J}$$

$$9,27 \cdot 10^9 \text{ J} - x$$

$$3,6 \cdot 10^6 \text{ J} - 1 \text{KWh}$$

$$x = 2573,77 \text{ KWh}$$

 $y = 160,86 \,\text{KWh/km}$

Questão 05

Uma pequena indústria farmacêutica constatou que a água destinada aos seus processos produtivos encontrava-se contaminada por ferro. O técnico responsável pelo laboratório de controle de qualidade coletou uma amostra de $50,0\,\mathrm{mL}$ da água de processo e realizou uma titulação com solução padronizada $0,025\,\mathrm{mol/L}$ de $KMnO_4$, em meio ácido. À medida que a reação progredia, o técnico observou que a coloração violeta-escuro, característica da solução de permanganato de potássio adicionada, tornava-se rapidamente clara, sinalizando a redução do MnO_4^{1-} a Mn^{2+} por Fe^{2+} . Após a adição de $40,0\,\mathrm{mL}$ de titulante, a cor violeta do permanganato de potássio passou a prevalecer, indicando que todos os íons Fe^{2+} haviam sido consumidos ao serem oxidados a Fe^{3+} . A seguir, a amostra foi tratada com zinco metálico, de modo que todos os íons Fe^{3+} foram convertidos em íons Fe^{2+} . Em uma última etapa, foram adicionados $60,0\,\mathrm{mL}$ da mesma solução de $KMnO_4$, oxidando todos os íons Fe^{2+} a Fe^{3+} . Determine as concentrações molares dos íons Fe^{2+} e Fe^{3+} na amostra inicial.

Resolução:

Inicialmente foi utilizada uma amostra de $50\,\mathrm{mL}$ de H_2O que continha íons Fe^{2^+} e Fe^{3^+} .

Considerando a 1º titulação temos:

$$5Fe^{2+} \rightarrow 5Fe^{3+} + 5e^{-} (\times 5)$$

$$MnO_4^- + 5e^- + 8H^+ \rightarrow Mn^{2+} + 4H_2O$$

$$\overline{5Fe_{(aq)}^{2+} + MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} \rightarrow 5Fe_{(aq)}^{3+} + Mn_{(aq)}^{2+} + 4H_{2}O_{(\ell)}}$$

Calculando o número de mols do KMnO4 temos:

$$N = M \cdot V$$

$$N = 0,025 \cdot 40$$

$$N = 1 \text{milimol} = 1 \cdot 10^{-3} \text{ mol}$$

$$5 \text{ mol } Fe^{2+} - - -1 \text{mol } MnO_4^-$$

$$x - - -1 \text{milimol}$$

$$x = 5 \text{ milimol } Fe^{2+}$$

Transformação de todo o Fe^{3+} em Fe^{2+} segundo a equação:

$$2Fe_{(aq)}^{3+} + Zn_{(s)}^{0} \rightarrow Zn_{(aq)}^{2+} + 2Fe_{(aq)}^{2+}$$

Considerando a 2ª titulação em que foram utilizados 60 mL de KMnO₄ 0,025 mol/ L temos:

$$N = M \cdot V$$

 $N = 0,025 \cdot 60$
 $N = 1,5 \text{ milimol} = 1,5 \cdot 10^{-3} \text{ mol}$

Cálculo do número de mols de $\mathit{Fe}^{^{++}}$.

$$\begin{aligned} 5Fe_{(aq)}^{2+} + MnO_{4(aq)}^{-} + 8H_{(aq)}^{+} &\to 5Fe_{(aq)}^{3+} + Mn_{(aq)}^{2+} + 4H_{2}O_{(\ell)} \\ 5\operatorname{mol} - - - \operatorname{lmol} \\ x - - - \operatorname{l,5} \operatorname{milimol} \\ x = 7,5 \operatorname{milimol} \operatorname{de} Fe^{2+} \end{aligned}$$

Cálculo da concentração de cada íon na solução original

$$Fe^{2+} \to N = 5 \cdot 10^{-3} \text{ mol}$$

$$\left[Fe^{2+} \right] = \frac{N}{V} = \frac{5 \cdot 10^{-3}}{50 \cdot 10^{-3}} = 0,1 \text{ mol/ L}$$

$$Fe^{3+} \to 7,5 - 5 = 2,5 \text{ milimol} = 2,5 \cdot 10^{-3} \text{ mol}$$

$$\left[Fe^{3+} \right] = \frac{N}{V} = \frac{2,5 \cdot 10^{-3}}{50 \cdot 10^{-3}} = 0,05 \text{ mol/ L}$$

Questão 06

O oxigênio 15, um isótopo radioativo, é utilizado na tomografia por emissão de pósitrons para avaliar a perfusão sanguínea e o consumo de oxigênio em distintas regiões do cérebro. Sabendo que uma amostra com 7,5 g desse isótopo radioativo $\binom{15}{8}O$ produz $1,0\times10^{23}$ emissões de radiação por minuto, determine o tempo para que essa amostra passe a produzir $2,5 \times 10^{22}$ emissões de por minuto.

Resolução:

1ª Parte

Cálculo da constante radioativa e da meia vida.

Sabe-se que
$$A(atividade) = K \cdot Na$$

 $A = 1 \cdot 10^{23}$ emissões/ min

Número de mol =
$$\frac{m}{MM}$$

$$n = \frac{7.5}{15}$$

$$n = 0.5$$

 $n = 0.5 \,\mathrm{mol}$

Número de átomos = $0.5 \cdot 6 \cdot 10^{23} = 3 \cdot 10^{23}$ átomos

$$A = K \cdot NA$$

$$1 \cdot 10^{23} = K \cdot 3 \cdot 10^{23}$$

$$K = \frac{1}{3}$$

Como
$$T_{\frac{1}{2}} = \frac{\ell n2}{K}$$

$$T_{\frac{1}{2}} = \frac{0.7}{\frac{1}{3}}$$

$$\therefore T_{\frac{1}{2}} = 2.1 \text{ min}$$

2ª Parte

• Considerando que: a_f = atividade final

 a_i = atividade inicial

x = número de meia vida

- $a_F = \frac{a_i}{2^x}$ $2.5 \cdot 10^{22} = \frac{1 \cdot 10^{23}}{2^x}$ $2^x = \frac{10^{23}}{2.5 \cdot 10^{22}}$ $2^x = 0.4 \cdot 10^1$ $2^x = 4$
- Levando em consideração que o tempo de meia vida do isótopo ${}_{8}^{15}O$ é 2,1 minutos.

Temos que

x = 2

Tempo decorrido é $(2) \cdot (2,1) = 4,2 \text{ minutos}$

▶ Questão 07

Estudos cinéticos demonstram que a reação $4A+B+C \rightarrow 2D+2E$ ocorre em três etapas, segundo o mecanismo a seguir.

Etapa 1: $A+B+C \rightarrow 2F$ (lenta);

Etapa 2: $2F + A \rightarrow 2G$ (rápida);

Etapa 3: $G + A \rightarrow D + E$ (rápida).

Os dados cinéticos de quatro experimentos conduzidos à mesma temperatura são apresentados na Tabela 1.

Tabela 1 – Dados cinéticos da reação em estudo

Experimento	Velocidade inicial	Concentração inicial das espécies químicas ($\operatorname{mol} \cdot \operatorname{L}^{-1}$)						
	$(\operatorname{mol} \cdot \operatorname{L}^{-1} \cdot \operatorname{s}^{-1})$	A	В	C	F	G		
1	90	9	3	3	2	2		
2	60	9	2	3	2	1		
3	120	9	3	4	1	1		
4	3	3	3	3	0.5	0.5		

Determine:

- a) a equação da velocidade da reação;
- b) a ordem global da reação;
- c) o valor da constante de velocidade.

Resolução:

Observação: A velocidade é determinada por fatores experimentais, os quais definem o mecanismo da reação. Observa-se que os dados experimentais não estão condizentes com o mecanismo fornecido, portanto deve-se utilizar os experimentos para definir a lei de velocidade.

Nota: A velocidade do experimento 4 deve ser igual a $30 \text{ mol} \cdot \text{L}^{-1} \cdot \text{s}^{-1}$ para estar de acordo com o mecanismo da etapa lenta, no entanto, de acordo com os experimentos, temos:

Considerando apenas a etapa lenta $V = k[A]^x[B]^y[C]^z$.

Determinando x

$$\left(\frac{9}{3}\right)^x = \frac{90}{3}$$

 $3^x = 30$

 $\log 3^x = \log 30$

 $\therefore x = 3$

Determinando y

$$\left(\frac{3}{2}\right)^y = \frac{90}{60}$$

$$\left(\frac{3}{2}\right)^y = \frac{3}{2}$$

$$\therefore v = 1$$

Determinando z

$$\left(\frac{3}{4}\right)^z = \frac{90}{120}$$

$$\left(\frac{3}{4}\right)^z = \frac{3}{4}$$

$$\therefore z = 1$$

a)
$$V = k[A]^3 \cdot [B]^1 \cdot [C]^1$$

c)
$$k = \frac{V}{[A]^{3} \cdot [B]^{1} \cdot [C]^{1}}$$
$$k = \frac{90}{(9)^{3} \cdot (3)(3)}$$
$$k = \frac{90}{6561}$$

 $k = 0,0137 \text{ mol}^{-4} \cdot \text{L}^4 \cdot \text{s}^{-1}$

Questão 08

Os reagentes de Grignard são normalmente preparados pela reação de um haleto orgânico e magnésio metálico, em temperaturas não superiores a 50°C. Das quatro reações indicadas abaixo, apenas duas ocorrem realmente.

a)
$$Br$$
 $+Mg$ Et_2O $MgBr$

b)
$$Br$$
 $+Mg$ Et_2O $MgBr$ CH NH_2 NH_2

c)
$$Br$$
 $+Mg$ H_2O H_3C CH H_3C CH H_3C CH

d)
$$ICH_2CH_2I + 2Mg \xrightarrow{Et_2O} IMgCH_2CH_2MgI$$

Cite os dois reagentes de Grignard que são realmente formados. Considerando as reações desses reagentes com formaldeído em excesso, em solução de éter etílico e posterior acidificação, escreva as fórmulas estruturais dos álcoois formados.

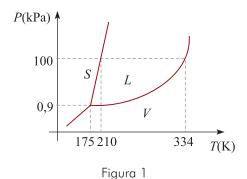
Resolução:

Os reagentes de Grignard são bases fortes, portanto não podem ser obtidos a partir de Haletos orgânicos que apresentam H ácido (b) e nem em meio aquoso (c). O Grignard é obtido na reação entre haleto orgânico com magnésio em meio anidro. Sendo assim os reagentes de Grignard realmente formados são:

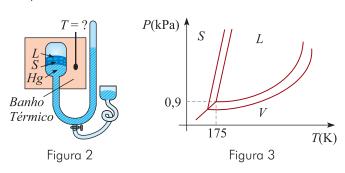
A reação de Grignard com metanal com posterior acidificação formará álcool primário.

$$OMgBr O C-H C-H H C-C-OH H$$

$$Fenilmetanol (Álcool Benzílico)$$


$$IMgCH_2^-CH_2MgI + 2 H-C' \xrightarrow{H}$$

$$Dois Equivalentes$$
reacionais do
metanal


Butano - 1,4 - Diol

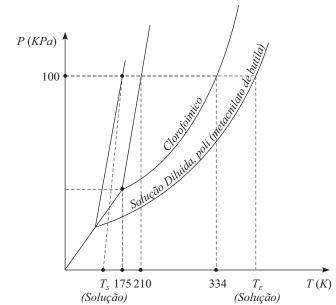
Duestão 09

O poli(metacrilato de butila) é um polímero solúvel em clorofórmio. A $100~\mathrm{kPa}$, o clorofórmio tem ponto de fusão (PF) igual a 210~K e ponto de ebulição (PE) igual a 334~K, e apresenta estados de agregação definidos conforme o diagrama de fases apresentado na Figura 1.

Observe agora, a Figura 2 que representa o clorofórmio confinado em um dispositivo fechado imerso em um banho térmico na situação de equilíbrio térmico e mecânico, e a Figura 3, que apresenta o diagrama de fases de uma solução diluída de poli(metacrilato de butila) em clorofórmio.

Considere que o clorofórmio tem calor de fusão $\left(\Delta H_{\mathit{fisão}}\right)$ constante e independente da pressão e da temperatura, e que a Equação 1 se aplica ao seu equilíbrio sólido-líquido, em que $\Delta P = \text{variação}$ de pressão na transição, $\Delta T = \text{variação}$ de temperatura na transição, $T_{\mathit{fisão}} = \text{temperatura}$ de fusão $\left(K\right)$ e $\Delta V_{\mathit{fisão}} = \text{variação}$ de volume na fusão.

$$rac{\Delta P}{\Delta T} = rac{\Delta H_{fusão}}{T_{fusão}\Delta V_{fusão}}$$
 Equação 1


Com base nas informações acima:

- a) determine a temperatura do banho térmico na Figura 2. Justifique sua resposta;
- b) faça o esboço da Figura 3 no **Caderno de Soluções** e indique os pontos de fusão (*PF*) e de ebulição (*PE*) da solução diluída de poli(metacrilato de butila) em clorofórmio, a 100 kPa;
- c) justifique, com base na Equação 1, porque o processo de solidificação do clorofórmio é acompanhado de redução de volume.

Resolução:

a) Temperatura do banho térmico em equilíbrio térmico e mecânico é a temperatura no Ponto Triplo, logo, $T_{(equilibrio)} = 175 K$.

b)

c) O diagrama de fases do clorofórmio nos informa que a redução da pressão reduz também a temperatura de solidificação, logo: $P_f < P_i \ e \ T_f - Ti$; $\Delta T < 0 \ e \ \Delta P < 0$

Como: $\Delta V_{(solificação)} = \frac{\Delta P}{\Delta T} \cdot \Delta H_{(solificação)}$

Na solidificação $\frac{\Delta P}{\Delta T} > 0$ e $\Delta H_{(solidificação)} < 0$

Logo: $\Delta V_{(solidificação)} < 0$

Questão 10

Monóxido de carbono a 473 K é queimado, sob pressão atmosférica, com 90% em excesso de ar seco, em base molar, a 773 K. Os produtos da combustão abandonam a câmara de reação a 1273 K. Admita combustão completa e considere que 1 mol de ar é constituído por 0,20 mol de oxigênio e 0,80 mol de nitrogênio. Calcule a quantidade de energia, em kJ, que é liberada no decorrer da reação, por mol de monóxido de carbono queimado. Considere que os gases apresentam comportamento ideal.

Resolução:

A combustão do CO(g) com 90% de ar em excesso pode ser descrita por:

$$1CO(g) + 0.95O_2(g) + 3.8N_2(g) \rightarrow 1CO_2(g) + 0.45O_2(g) + 3.8N_2(g)$$

 $\Delta H^o = -283 \text{ kJ/mol}$

Como o CO(g) está sendo queimado a 473 K , o $\Delta H_{(473\,K)}$ pode ser calculado por Kirchoff.

$$\Delta H_{(473 \text{ K})} = \Delta H_{(298 \text{ K})}^o + Cp \cdot \Delta T = -283 + 0.03 \cdot 175 = -277.75 \text{ kJ/mol}$$

Os gases que irão ser aquecidos absorvendo calor são: $CO_2(g)$; $O_2(g)$ em excesso e $N_2(g)$

$$\Delta H_{(CO_1)} = nCO_2 \cdot Cp \cdot \Delta T = 1.0,04(1273 - 773) = +20 \text{ kJ}$$

$$\Delta H_{(O_{10000})} = nO_2 \cdot Cp \cdot \Delta T = 0.45 \cdot 0.03(1273 - 773) = +6.75 \text{ kJ}$$

$$\Delta H_{(N_2)} = nN_2 \cdot Cp \cdot \Delta T = 3,8 \cdot 0,03(1273 - 773) = +57 \text{ kJ}$$

O
$$\Delta H_{(Total)} = -277,75 + 20 + 6,75 + 57 = -194 \text{ kJ/mol } CO(g)$$

Química

Gilver Luís Cícero Nelson Thé Welson Willian

Colaboradores

Aline Alkmin, Igor Macedo, Isabela Oliveira, José Diogo Paulo Adorno, Moisés Humberto

Digitação e Diagramação

Daniel Alves Érika Rezende João Paulo Valdivina Pinheiro

Desenhistas

Rodrigo Ramos, Vinicius Ribeiro

Projeto Gráfico

Vinicius Ribeiro

Assistente Editorial

Valdivina Pinheiro

Supervisão Editorial

José Diogo Rodrigo Bernadelli Marcelo Moraes

Copyright@Olimpo2014

A Resolução Comentada das provas do IME poderá ser obtida diretamente no

OLIMPO Pré-Vestibular, ou pelo telefone (62) 3088-7777

As escolhas que você fez nessa prova, assim como outras escolhas na vida, dependem de conhecimentos, competências, conhecimentos e habilidades específicos. Esteja preparado.

www.grupoolimpo.com.br

